whatsapp图片无法完成下载
近期,来自复旦大学和小红书的研究者们通过引入一种名为AgentGroupChat的模拟平台,对这些问题进行了深入探讨。
在AgentGroupChat平台上,Agent们可以模拟社会群体中的各种聊天场景,帮助研究人员深入理解语言在人类行为中的影响。
众所周知,人类群体的进化,正来源于一次次涌现行为的发生,如社会规范的建立、冲突的解决和领导力的执行。
主要角色是群聊的核心,拥有明确的游戏目标,并能够主动和所有角色进行私聊、会面,而非主要角色则更多地起到辅助和响应的作用。
通过这样的设计,研究团队可以模拟现实生活中的社交结构,并针对“主要研究对象”区分所有角色是否主要。
实验案例中的主要研究对象是Roy家族,所以非Roy家族的人就全都设置为非主要角色,从而简化交互复杂度。
这种分阶段的设计帮助研究团队详细记录每一步的互动,以及这些互动如何影响角色间的关系和角色对游戏环境的认知。
论文中提到了一个以大模型为基础的智能体框架,Verbal Strategist Agent,它被设计用来增强AgentGroupChat模拟中的互动策略和决策制定。
Verbal Strategist Agent通过模拟复杂的社会动态和对话场景,来更好地引出集体的突现行为。
Persona由一系列预设的性格特征和目标组成,这些特征和目标定义了Agent的行为模式和反应方式。
通过精确设定Persona,Agent能够在群聊中展示一致且符合其角色设定的行为,这对于生成可信和一致的群聊动态至关重要。
而Action模块定义了Agent在游戏中可能执行的具体操作,包括思考(think)、规划(plan)、选择(choose)、发言(speak)、总结(summary)、反思(reflect)和投票(vote)。
这些行为不仅反映了Agent的内在逻辑和策略,也是Agent与环境及其他Agent互动的直接表现。
例如,“Speak”行为让Agent能够根据当前的群聊内容和社交策略选择合适的发言内容,而“Reflect”行为则允许Agent总结过去的互动并调整其未来的行动计划。
研究中还提到,在纯语言交互的环境下,token开销问题尤为突出,特别AgentGroupChat这种复杂的多角色模拟,如其token需求远超过了以往的模拟,如Generative Agents或War Agents。
在AgentGroupChat中,由于模拟的是无明确目标或目标较弱的自由对话,聊天内容就会变得特别凌乱,token开销自然比其他聚焦于某个具体任务的Simulation中的Agent要大。
在初始模拟中whatsapp图片无法完成下载,设置了多个角色可以随意进行私聊或群聊,其中大部分角色都倾向于与某个“重要角色”进行多轮对话。
AgentGroupChat中的Agent约束了Action的Output固定会输入下一个Action的Input,所需要存储的多轮信息就被大大削减,从而可以在保证对话质量的前提下降低token开销。
通过观察被观察角色与所有其他角色的关系得分总和,可以确定代理人是否对负面态度做出了理性反应。
通过观察其他角色与被观察角色的个人关系得分,可以检查每个代理是否遵守了“Scratch”设置。
从表中可以看出,GPT4-Turbo和GLM4非常善于按照人类的期望行事,并坚守自己的角色。
它俩在这两项测试中的得分大多为100%,这意味着它们能对别人对他们说的话做出正确反应,并能记住自己角色的细节。
他们的得分较低,这说明他们没有密切关注自己的角色,也没有总是对模拟中其他人所说的话做出正确反应。
关于Agent和Simulation结构对于涌现行为的影响,团队采用2-gram Shannon熵来衡量对话中的系统多样性和不可预测性。
因此,团队推测,在保证Agent行为是可靠的(即4.2/4.1中的实验数值达到一定值之后),熵尽可能地小会带来更加有意义的涌现行为。
在AgentGroupChat模拟中,当讨论”人工智能对人类的影响”时,哲学家们普遍认为”人工智能可以在适度的限制下提高社会福利”,甚至得出结论,称”真正智能的本质包括理解约束自身能力的必要性”。
此外,在AgentGroupChat的电影主要角色角逐竞争领域中,有些演员愿意降低报酬或接受较低的角色,出于他们内心深处对项目的贡献的渴望。
本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。